当前位置: 首页 > 产品中心 > lcd显示屏-竖屏

OLED详解 (1)

发表时间: 2024-11-25 作者: lcd显示屏-竖屏
产品详情

  (OrganicLight-EmittingDiode),又称为有机电激光显示(OrganicElectroluminesenceDisplay,OELD)。因为具备轻薄、省电等特性,因此从2003年开始,这种显示设备在MP3播放器上得到了广泛应用,而对于同属数码类产品的DC与手机,此前只是在一些展会上展示过采用

  OLED显示技术与传统的LCD显示方法不一样,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕能做到更轻更薄,可视角度更大,还可以显着节省电能。

  目前在OLED的二大技术体系中,低分子OLED技术为日本掌握,而高分子的PLEDLG手机的所谓OEL就是这一个体系,技术及专利则由英国的科技公司CDT掌握,两者相比PLED产品的彩色化上仍有困难。而低分子OLED则较易彩色化,不久前三星就发布了65530色的手机用OLED。

  不过,虽然将来技术更优秀的OLED会取代TFT等LCD,但有机发光显示技术还存在常规使用的寿命短、屏幕大型化难等缺陷。目前采用OLED的主要是三星如新上市的SCH-X339就采用了256色的OLED,至于OEL则主要被LG采用在其CU81808280上我们都有见到。

  为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。每个OLED的显示单元都能受控制地产生三种不一样的颜色的光。OLED与LCD一样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。主动式的OLED比较省电,但被动式的OLED显示性能更佳。

  OLED的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:空穴传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极空穴与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红、绿和蓝RGB三原色,构成基本色彩。OLED的特性是自己发光,不像TFTLCD需要背光,因此可视度和亮度均高,其次是电压需求低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为21世纪最具前途的产品之一。

  有机发光二极体的发光原理和无机发光二极体相似。当组件受到直流电(DirectCurrent;DC)所衍生的顺向偏压时,外加之电压能量将驱动电子(Electron)与空穴(Hole)分别由阴极与阳极注入组件,当两者在传导中相遇、结合,即形成所谓的电子-空穴复合(Electron-HoleCapture)。而当化学分子受到外来能量激发后,若电子自旋(ElectronSpin)和基态电子成对,则为单重态(Singlet),其所释放的光为所谓的萤光(Fluorescence);反之,若激发态电子和基态电子自旋不成对且平行,则称为三重态(Triplet),其所释放的光为所谓的磷光(Phosphorescence)。

  当电子的状态位置由激态高能阶回到稳态低能阶时,其能量将分别以光子(LightEmission)或热能(HeatDissipation)的方式放出,其中光子的部分可被利用当作显示功能;然有机萤光材料在室温下并无法观测到三重态的磷光,故PM-OLED组件发光效率之理论极限值仅25%。

  PM-OLED发光原理是利用材料能阶差,将释放开来的能量转换成光子,所以我们大家可以选择适当的材料当作发光层或是在发光层中掺杂染料以得到我们所需要的发光颜色。此外,一般电子与电洞的结合反应均在数十纳秒(ns)内,故PM-OLED的应答速度很快。

  P.S.:PM-OLEM的典型结构。典型的PM-OLED由玻璃基板、ITO(indiumtinoxide;铟锡氧化物)阳极(Anode)、有机发光层(EmittingMaterialLayer)与阴极(Cathode)等所组成,其中,薄而透明的ITO阳极与金属阴极如同三明治般地将有机发光层包夹其中,当电压注入阳极的空穴(Hole)与阴极来的电子(Electron)在有机发光层结合时,激发有机材料而发光。

  而目前发光效率较佳、普遍被使用的多层PM-OLED结构,除玻璃基板、阴阳电极与有机发光层外,尚需制作空穴注入层(HoleInjectLayer;HIL)、空穴传输层(HoleTransportLayer;HTL)、电子传输层(ElectronTransportLayer;ETL)与电子注入层(ElectronInjectLayer;EIL)等结构,且各传输层与电极之间需设置绝缘层,因此热蒸镀(Evaporate)加工难度相对提高,制作的步骤亦变得复杂。

  由于有机材料及金属对氧气及水气相当敏感,制作完成后,需经过封装保护处理。PM-OLED虽需由数层有机薄膜组成,然有机薄膜层厚度约仅1,000~1,500A(0.10~0.15um),整个显示板(Panel)在封装加干燥剂(Desiccant)后总厚度不及200um(2mm),具轻薄之优势。

  有机材料的特性深深地影响组件之光电特性表现。在阳极材料的选择上,材料本身必需是具高功函数(Highworkfunction)与可透光性,所以具有4.5eV-5.3eV的高功函数、性质稳定且透光的ITO透明导电膜,便被大范围的应用于阳极。在阴极部分,为增加组件的发光效率,电子与电洞的注入常常要低功函数(Lowworkfunction)的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属来制作阴极(例如:Mg-Ag镁银)。

  适合传递电子的有机材料不一定适合传递电洞,所以有机发光二极体的电子传输层和电洞传输层必须选用不同的有机材料。目前最常被用来制作电子传输层的材料必须制膜安定性高、热稳定且电子传输性佳,一般一般会用萤光染料化合物。如Alq、Znq、Gaq、Bebq、Balq、DPVBi、ZnSPB、PBD、OXD、BBOT等。而电洞传输层的材料属于一种芳香胺萤光化合物,如TPD、TDATA等有机材料。

  有机发光层的材料须具备固态下有较强萤光、载子传输性能好、耐热性和化学稳定性佳、量子效率高且能够真空蒸镀的特性,一般有机发光层的材料使用通常与电子传输层或电洞传输层所采用的材料相同,例如Alq被大范围的使用在绿光,Balq和DPVBi则被大范围的应用于蓝光。

  一般而言,OLED可按发光材料分为两种:小分子OLED和高分子OLED(也可称为PLED)。小分子OLED和高分子OLED的差异主要体现在器件的制备工艺不同:小分子器件主要是采用真空热蒸发工艺,高分子器件则采用旋转涂覆或喷涂印刷工艺。小分子材料厂商主要有:Eastman、Kodak、出光兴产、东洋INK制造、三菱化学等;高分子材料厂商主要有:CDT、Covin、DowChemical、住友化学等。目前国际上与OLED有关的专利已超越1400份,其中最基本的专利有三项。小分子OLED的基本专利由美国Kodak公司拥有,高分子OLED的专利由英国的CDT(CambridgeDisPlayTechnology)和美国的Uniax公司拥有。

  (1)ITO表面平整度:ITO目前已大范围的应用在商业化的显示器面板制造,其具有高透射率、低电阻率及高功函数等优点。一般而言,利用射频溅镀法(RFsputtering)所制造的ITO,易受工艺控制因素不良而导致表面不平整,进而产生表面的尖端物质或突起物。另外高温锻烧及再结晶的过程亦会产生表面约10~30nm的突起层。这些不平整层的细粒之间所形成的路径会提供空穴直接射向阴极的机会,而这些错综复杂的路径会使漏电流增加。一般有三个办法能够解决这表面层的影响?U一是增加空穴注入层及空穴传输层的厚度以降低漏电流,此方法多用于PLED及空穴层较厚的OLED(~200nm)。二是将ITO玻璃再处理,使表面十分光滑。三是使用其它镀膜方法使表面平整度更好。

  (2)ITO功函数的增加:当空穴由ITO注入HIL时,过大的位能差会产生萧基能障,使得空穴不易注入,因此怎么来降低ITO/HIL接口的位能差则成为ITO前处理的重点。一般个人会使用O2-Plasma方式增加ITO中氧原子的饱和度,以达到增加功函数之目的。ITO经O2-Plasma处理后功函数可由原先之4.8eV提升至5.2eV,与HIL的功函数已非常接近。

  加入辅助电极,由于OLED为电流驱动组件,当外部线路过长或过细时,于外部电路将会导致非常严重之电压梯度,使真正落于OLED组件之电压下降,导致面板发光强度减少。由于ITO电阻过大(10ohm/square),易造成不必要之外部功率消耗,增加一辅助电极以降低电压梯度成了增加发光效率、减少驱动电压的快捷方式。铬(Cr:Chromium)金属是最常被用作辅助电极的材料,它具有对环境因子稳定性佳及对蚀刻液有较大的选择性等优点。然而它的电阻值在膜层为100nm时为2ohm/square,在某些应用时仍属过大,因此在相同厚度时拥有较低电阻值的铝(Al:Aluminum)金属(0.2ohm/square)则成为辅助电极另一较佳选择。但是,铝金属的高活性也使其有信赖性方面之问题因此,多叠层之辅助金属则被提出,如:Cr/Al/Cr或Mo/Al/Mo,然而此类工艺增加复杂度及成本,故辅助电极材料的选择成为OLED工艺中的重点之一。

  在高解析的OLED面板中,将细微的阴极与阴极之间隔离,一般所用的方法为蘑菇构型法(Mushroomstructureapproach),此工艺类似印刷技术的负光阻显影技术。在负光阻显影过程中,许多任务艺上的变异因子会影响阴极的品质及良率。例如,体电阻、介电常数、高分辨率、高Tg、低临界维度(CD)的损失以及与ITO或其它有机层适当的黏着接口等。

  ⑴吸水材料:一般OLED的生命周期易受周围水气与氧气所影响而降低。水气来源大致上可以分为两种:一是经由外在环境渗透进入组件内,另一种是在OLED工艺中被每一层物质所吸收的水气。为减少水气进入组件或排除由工艺中所吸附的水气,一般最常使用的物质为吸水材(Desiccant)。Desiccant可通过化学吸附或物理吸附的方式捕捉自由移动的水分子,以达到去除组件内水气的目的。

  ⑵工艺及设备开发:封装工艺之流程如图四所示,为了将Desiccant置于盖板及顺利将盖板与基板黏合,需在真空环境或将腔体充入不活泼气体下进行,例如氮气。有必要注意一下的是,如何让盖板与基板这两部分工艺衔接更有效率、减少封装工艺成本以及减少封装时间以达最佳量产速率,已俨然成为封装工艺及设备技术发展的3大主要目标。

  显示器全彩色是检验显示器是否在市场上具有竞争力的重要标志,因此许多全彩色化技术也应用到了OLED显示器上,按面板的类型通常有下面三种:RGB象素独立发光,光色转换(ColorConversion)和彩色滤光膜(ColorFilter)。

  利用发光材料独立发光是目前采用最多的彩色模式。它是利用精密的金属荫罩与CCD象素对位技术,首先制备红、绿、蓝三基色发光中心,然后调节三种颜色组合的混色比,产生真彩色,使三色OLED组件独立发光构成一个象素。该项技术的重点是提高发光材料的色纯度和发光效率,同时金属荫罩刻蚀技术也至关重要。

  目前,有机小分子发光材料AlQ3是很好的绿光发光小分一于材料,它的绿光色纯度,发光效率和稳定能力都很好。但OLED最好的红光发光小分子材料的发光效率只有31m/W,寿命1万小时,蓝色发光小分子材料的发展也是很慢和很困难的。有机小分子发光材料面临的最大瓶颈在于红色和蓝色材料的纯度、效率与寿命。但人们通过给主体发光材料掺杂,已得到了色纯度、发光效率和稳定能力都比较好的蓝光和红光。

  高分子发光材料的优点是能够最终靠化学修饰调节其发光波长,现已得到了从蓝到绿到红的覆盖整个可见光范围的各种颜色,但其寿命只有小分子发光材料的十分之一,所以对高分子聚合物,发光材料的发光效率和寿命都有待提升。不断地开发出性能优良的发光材料应该是材料开发工作者的一项艰巨而长期的课题。

  随着OLED显示器的彩色化、高分辨率和大面积化,金属荫罩刻蚀技术直接影响着显示板画面的质量,所以对金属荫罩图形尺寸精度及定位精度提出了更加苛刻的要求。

  膜阵列,首先制备发蓝光OLED的器件,然后利用其蓝光激发光色转换材料得到红光和绿光,从而获得全彩色。该项技术的重点是提高光色转换材料的色纯度及效率。这种技术不需要金属荫罩对位技术,只需蒸镀蓝光OLED组件,是未来大尺寸全彩色OLED显示器极具潜力的全彩色化技术之一。但它的缺点是光色转换材料容易吸收环境中的蓝光,造成图像对比度下降,同时光导也会造成画面质量降低的问题。目前掌握此技术的日本出光兴产公司已生产出10英寸的OLED显示器。

  此种技术是利用白光OLED结合彩色滤光膜,首先制备发白光OLED的器件,然后通过彩色滤光膜得到三基色,再组合三基色实现彩色显示。该项技术的重点是获得高效率和高纯度的白光。它的制作的步骤不需要金属荫罩对位技术,可采用成熟的液晶显示器LCD的彩色滤光膜制作技术。所以是未来大尺寸全彩色OLED显示器具有潜力的全彩色化技术之一,但采用此技术使透过彩色滤光膜所造成光损失高达三分之二。目前日本TDK公司和美国Kodak公司采用这种方法制作OLED显示器。

  RGB象素独立发光,光色转换和彩色滤光膜三种制造OLED显示器全彩色化技术,各有优缺点。可根据工艺结构及有机材料决定。

  ⑴静态驱动方式:在静态驱动的有机发光显示器件上,一般各有机电致发光像素的阴极是连在一起引出的,各像素的阳极是分立引出的,这就是共阴的连接方式。若要一个像素发光只要让恒流源的电压与阴极的电压之差大于像素发光值的前提下,像素将在恒流源的驱动下发光,若要一个像素不发光就将它的阳极接在一个负电压上,就可将它反向截止。但是在图像变化比较多时也许会出现交叉效应,为了尽最大可能避免我们一定要采用交流的形式。静态驱动电路通常用于段式显示屏的驱动上。

  ⑵动态驱动方式:在动态驱动的有机发光显示器件上人们把像素的两个电极做成了矩阵型结构,即水平一组显示像素的同一性质的电极是共享的,纵向一组显示像素的相同性质的另一电极是共享的。如果像素可分为N行和M列,就可有N个行电极和M个列电极。行和列分别对应发光像素的两个电极。即阴极和阳极。在实际电路驱动的过程中,要逐行点亮或者要逐列点亮像素,一般会用逐行扫描的方式,行扫描,列电极为数据电极。实现方式是:循环地给每行电极施加脉冲,同时所有列电极给出该行像素的驱动电流脉冲,以此来实现一行所有像素的显示。该行不再同一行或同一列的像素就加上反向电压使其不显示,以避免“交叉效应”,这种扫描是逐行顺序进行的,扫描所有行所需时间叫做帧周期。

  在一帧中每一行的选择时间是均等的。假设一帧的扫描行数为N,扫描一帧的时间为1,那么一行所占有的选择时间为一帧时间的1/N该值被称为占空比系数。在同等电流下,扫描行数增多将使占空比下降,从而引起有机电致发光像素上的电流注入在一帧中的有效下降,降低了显示质量。因此随着显示像素的增多,为了能够更好的保证显示质量,就需要适度地提高驱动电流或采用双屏电极机构以提高占空比系数。

  除了由于电极的公用形成交叉效应外,有机电致发光显示屏中正负电荷载流子复合形成发光的机理使任何两个发光像素,只要组成它们结构的任何一种功能膜是直接连接在一起的,那两个发光像素之间就可能有相互串扰的现象,即一个像素发光,另一个像素也可能发出微弱的光。这种现象还在于有机功能薄膜厚度均匀性差,薄膜的横向绝缘性差造成的。从驱动的角度,为了减缓这种不利的串扰,采取反向截至法也是一行之有效的方法。

  带灰度控控制的显示:显示器的灰度等级是指黑白图像由黑色到白色之间的亮度层次。灰度等级越多,图像从黑到白的层次就越丰富,细节也就越清晰。灰度对于图像显示和彩色化都是一个很重要的指标。通常用于有灰度显示的屏多为点阵显示屏,其驱动也多为动态驱动,实现灰度控制的几种方法有:控制法、空间灰度调制、时间灰度调制。

  有源驱动的每个像素配备具有开关功能的低温多晶硅薄膜晶体管(LowTemperaturePoly-SiThinFilmTransistor,LTP-SiTFT),而且每个像素配备一个电荷存储电容,外围驱动电路和显示阵列总系统集成在同一玻璃基板上。与LCD相同的TFT结构,无法用于OLED。这是因为LCD采用电压驱动,而OLED却依赖电流驱动,其亮度与电流量成正比,因此除了进行ON/OFF切换动作的选址TFT之外,还需要能让足够电流通过的导通阻抗较低的小型驱动TFT。

  有源驱动属于静态驱动方式,具有存储效应,可进行100%负载驱动,这种驱动不受扫描电极数的限制,可以对各像素独立进行选择性调节。

  有源驱动无占空比问题,驱动不受扫描电极数的限制,易于实现高亮度和高分辨率。

  有源驱动由于可以对亮度的红色和蓝色像素独立进行灰度调节驱动,这更加有助于OLED彩色化实现。

  有源矩阵的驱动电路藏于显示屏内,更易于实现集成度和小型化。另外由于解决了外围驱动电路与屏的连接问题,这在某些特定的程度上提高了成品率和可靠性。